System Administration

Firewalls and Packet Filters

What 1s a firewall?

* A device that decides what packets may pass a
certain point

* [t may be a separate device that has more than
one network interface

* [t may be a piece of software on your computer

Why use firewalls?

* It can add another degree of security to a system
or network

e Help protect 'lesser' systems

Reasons against using a firewall

* May cause other problems, especially with
certain protocols

- AFS
- VOIP

Firewalls are not a panacea

 Having a firewall does not give you absolute
security

* Your firewall may be compromised or have holes

* It can only protect against stuff from outside of
the firewall

* If a service you allow through has a compromise
a firewall will do nothing

Iptables

e [.inux 2.6 kernel uses Netfilter, and the interface
to Netfilter 1s Iptables

e Kernel level packet management

- You own the machine, you own the packets

— This processing occurs before any user space
processing (such as tcpwrappers, encryption, etc...)

nat Table
POSTROUTING Chain

Y

mangle Table
POSTROUTING Chain

A

filter Tabl=
OUTPUT Chain

nat Table
OUTPUT Chain

FPackeat In

Iptables

mangle Table
PREROUTING Chain

v

nat Table
PREROUTING Chain

h 4

Routing

Data for
the firewall®

&,

mangle Table
INPUT Chain

mangle Table
FORWARD Chain

mangle Table
OUTPLUT Chain

&

Fouting

Firewall Rephy

Local Processing
of Data

v

L 4

filter Table
FORWARD Chain

v

mangle Table
POSTROUTIMG Chain

v

nat Table
POSTROUTIMG Chain

filber Table
INPUT Chain

Facket Out

Metwork B

How 1ptables works

e netfilter has three tables:

— NAT changes the source or destination address of the
packet. We will not cover this

— mangle changes other parts in the packet. We will
also not cover this

— filter decides whether or not to let a packet pass
through

* All three tables process packets but pass
everything through by default

How 1ptables works

e Each table contains chains of rules

e Packets are compared to rules; actions are taken

<chain>
|
->rule 1

|
-> rule 2

How 1ptables works

* Every packet goes through one of three chains:
input, output or forward:

— 1nput: packets that come in an interface destined for
this machine

— output: packets that originate on this machine going
out an interface

— forward: packets coming in this machine and then
going back out. We will not cover this

Path of Packets

e Packet enters an interface

— enters INPUT chain

— filter table directs 1t to local processes

* Packet is created by a local process
— enters OUTPUT chain

How Iptables works

* Each chain has a default rule called a policy

e [f no rule in the chain matches, the default rule 1s
applied

e Otherwise the first rule that matches applies

Enabling Iptables

e chkconfig -l evel 35 | ptables on
e service | ptables on

Saving rules

* The 1ptables command allows you to add or
remove rules

* Those rules are only active until the machine 1s
rebooted

e service | ptabl es save saves the rules in
[etc/sysconfig/iptables

Building rules

* Do it the easy way:

system confi g-securityl evel

* Do it the harder way:

— writing your own rules

system confi g-securityl evel

* As root, type the command:

system confi g-securityl evel

e Security | evel enables or disables the
firewall

e Trust ed devi ces marks devices that are
trusted no matter what

— even 1f other blocks are made, any traffic to or from
these devices goes through

system confi g-securityl evel

e Trusted servi ces areincoming services
that are allowed through

* Click on the OK button to make changes

* It saves the firewall config in
[etc/sysconfig/iptabl es

* Warning: if you use system-config-securitylevel
and have previously stored rules in
[etc/sysconfig/i ptabl es they will be
deleted

Creating your own rules

* You may be trying to do something more
complicated than system-config-securitylevel
allows you to do

Basic 1ptables operations

e | ptables -L chain

List the rules in a particular chain
e | ptables -F chain
Flush all the rules 1n a chain
e | ptables -P chain policy

Set the default policy on a chain. Policy can be either
ACCEPT or DROP

Which Detault Policy?

* ACCEPT means that you have to explicitly block
packets

— It 1s the easiest to use, but if you forget to block
something 1t will get through

e DROP means that you have to explicitly allow
packets

— It 1s harder to use as you will have to specity
everything you allow, but 1s the most secure

Adding Rules

e | ptables -A chain rule

Appends a rule to the end of a chain

e | ptables -1 chain nunber rule

Place a rule at a specific number on a chain

| ptables -A INPUT -s 127.0.0.1 -] DRCP

| ptables -1 INPUT 1 -s 127.0.0.1 -]
DROP

Deleting Rules

e | ptabl es -D chai n nunber

Delete a specific number rule from a chain

e | ptables -D chain rule

Delete the first rule that matches rule from a chain

| ptables -D | NPUT 1
| ptables -D INPUT -s 127.0.0.1 -] DRCP

Source and Destination

e -S address

Specifies a source address

e -d address
Specifies a destination address

e addr ess isin the form

- 129. 186. 1. 200
- 129.186. 1.0/ 24
- 129. 186. 1. 0/ 255. 255. 255. 0

Protocol, Port and Interface

e -p proto
Matches a particular protocol. Common ones are TCP,
UbP, | CVP
e --sport port --dport port

Matches a particular source or destination port
Can be either a number or a symbolic name (ssh)

e -| INnterface -0 I nterface

Matches traffic coming in or going out a particular
interface

Accepting or Rejecting

e -j DROP
Drops

e -j ACCEP
Accepts

e -j REJECT

Rejects a connection

Negation

* Addresses, protocols, ports and interfaces allow
you to also negate using !

-s 1127.0.0.1
-d 1129.186.0.0/ 16

-p ' TCP
--sport 180
--dport 22
-1 !lethO

-0 !lo

Sample Rules

| ptabl es -P | NPUT DROP

| ptabl es -P OUTPUT ACCEPT

| ptables -AINPUT -i lo -s 127.0.0.1 -j ACCEPT
| ptables -A INPUT -p TCP --dport ssh -] ACCEPT
| ptables -A INPUT -p TCP --dport 80 -] ACCEPT

| ptables -A OQUTPUT -0 ethO -p tcp --dport 25 -d
129. 186. 140.5 -j ACCEPT

| ptables -A OQUTPUT -0 ethO -p tcp --dport 25 -j DROP

Exercise

* Find a partner

* Figure out each other's 1p address

A brief introduction to nc

enc -| -p <portnunber>
— listens for incoming connections on <portnumber>

— the “‘server side”

e NC -vvVv <host nane> <port nunber >

- makes a connection to <hostname> on <portnumber>
— -vvv makes it verbose

— the “client side”

nc example

* One partner should run
-nc -1 -p 10137
* The other should run

- nc -vvv <renotei p> 10137

e Start typing to each other, cont r ol - ¢ to quit

block all traffic from a host

* The “server side” person should add the
following rule

-iptables -A INPUT -s <clientip> -j
DROP

-nc -1 -p 10137
* The “client side” person should now try to make
a connection

- nc -vvv <serverip> 10137

* Does 1t work? How long did it take?

block all traffic, continued

* “Server side” person should do:

-iptables -D INPUT -s <clientip> -j
DROP

ot ables -A I NPUT -s <clientip> -]

R

=JECT

e “Client side” person should try:

- nc -vvv <serverip> 10137

* How did that work? Can you ping the “server”?

block some traffic

e The “server side” should run

-iptables -D INPUT -s <clientip> -j

REJECT

-1 ptables -A INPUT -s <clientip>

-p tcp --dport 10137 -|

e The “client side” should run

- nc -vvv <serverip> 10137

* Can you connect? Can you ping?

R

=JECT

block some traffic

* The “server side” should try
-nc -1 -p 10138
* The “client side” should try

- nc -vvv <serverip> 10138

e Can you connect?

The Order of Rules Count

e “Server side” should do

-1 ptables -F | NPUT
-1 ptables -A INPUT -s <clientip>
-p tcp --dport 10137 -] REJECT

-iptables -A INPUT -s <clientip> -j
ACCEPT

e “Client side” should try

- nc -vvv <serverip> 10137

e Can you connect?

