i Basic UNIX

Processes and Shells

CPU

Kernel

Disk

Basic UNIX

Processes and Shells

Processes

Processes are tasks run by you or the
OS.

Processes can be:

e shells

e commands
® programs
e daemons

* scripts

Basic UNIX

Processes and Shells

Shells

Processes operate in the context of a
shell.

The shell 1s a command interpreter
which:

- Interprets built-in characters,
variables and commands

- Passes the results on to the kernel
The kernel 1s the lowest level of

software running. It controls access to
all hardware in the computer.

Basic UNIX

Processes and Shells

Shells

Types of shells:

- /bin/sh ~ — Bourne shell

- /bin/csh — C shell

- /bin/tcsh - Enhanced C shell

- /bin/bash — Bourne “again” shell
- /bin/zsh — Z shell

- /bin/ksh — Korn shell

Basic UNIX

Processes and Shells

Shell Scripts

Shell scripts are files which contain
commands to be interpreted and
executed by a shell.

A shell 1s 1its own programming
environment. Shells contain:

- Variables

- Loops

- Conditional statements

- Input and Output

- Built-in commands

- Ability to write functions

Basic UNIX

Processes and Shells

Shell Scripts

Specifying the shell to be used:
On the first line of the file:
e Implicitly

» blank line — Bourne shell
» #1n column 1 — C shell

* Explicitly

= #!/bin/sh — Bourne shell
= #!/bin/csh — C shell

Basic UNIX

Processes and Shells

Exercise

Which shell are you using?

echo SSHELL

(Don't worry about what these mean, we'll come

back to them later)

Basic UNIX
An Interlude

How to be “Cool”

All UNIX people pronounce
EVERYTHING. If you don't you
aren't cool.

Examples:

- 1 - bang

- # - pound

- awk — awk as 1n “awkward”
© grep — ZITIIIIT ep

- chmod — chaaa mod

-+ chown — chaa own

© WWW — WU WU wu

Basic UNIX

Processes and Shells

echo

Using echo 1s very useful for
debugging scripts. The echo

command prints the value of an

expression (to the screen by default)

<lister> echo Hello World!
Hello World!

The -n option suppresses newlines

Basic UNIX

Pr()cesses and Shells

Exercise

Run the following script:

cd /opt/exercises/Shells
./progress.sh

#!/bin/sh

i=1

while [$1i < 12]

do
echo -n '.'
sleep 1
i="expr $1i + 1°

done

Basic UNIX

Processes and Shells

echo

Echoing in a script prints each
shell script line to the screen before it
1s executed. Use the command

set -x

to turn this on

3 Basic UNIX

Processes and Shells

Exercise

Run this script:

./echotoggle.sh

#!/bin/sh

set -X

echo

echo Here is a listing of the files

echo
Is -1

Basic UNIX

Processes and Shells

Shell Variables

Variables hold strings that can be
used later

Two Types of Variables:

* Local (local scope)

* Environment (global scope)

Basic UNIX

Processes and Shells

Shell Variable Assignment

e | .ocal Variables
variable=<value>
e Environment

variable=<value>
export variable

Basic UNIX

Processes and Shells

Accessing Variables
All variables are dereferenced by
placing a $ in front of the variable

name

<lister> echo SPATH

3 Basic UNIX

Processes and Shells
Exercise

Run this script:

./variables].sh

#!/bin/sh

GREETING=Hello

export GREETING

there=there

friends='Kevin Lisa Joanne'
echo SGREETING Sthere S$friends

Basic UNIX

Processes and Shells

Blanks and Quotes

Blanks and other white space are
ignored by the shell. If you want them
included, you must use quotes.

Two types of quotes:

Each has a different behaviour when
using variables.

Basic UNIX

Processes and Shells

Quotes and Substitution

When a shell interprets each line, it
performs variable substitution before
executing commands.

If a variable 1s within double quotes,
“ ¢ 1t will be substituted.

If a variable 1s within single quotes, it
will not be substituted. It will take on
1ts literal value

Basic UNIX

Processes and Shells
Exercise

Run this script:

./variables2.sh

#!/bin/sh

GREETING=Hello

there=there

friend1=Kevin

friend2=L1isa

friend3=Joanne

friends="$friend1 $friend2 $friend3"
echo SGREETING $there $friends
echo SGREETING '$friends'

Basic UNIX

Processes and Shells

Listing Defined Variables
For Your Current Shell

To list all variables, use the set
command with no argument

For environement variables, use
export with no variables

Exercise

Get listings of the current shell
variables

set
export

Basic UNIX

Processes and Shells

Some Common
Shell Variables

e PATH - directory paths to search for
commands

* HOSTNAME - the name of the computer

e USER - the user id of the user running this shell
* SHELL - the shell currently being used

e TERM - the type of terminal being used

e PS1 - the prompt to print when then shell is
ready for another command

Basic UNIX

Processes and Shells

Deassigning Variables

For all variables, use the unset
command

unset variable

Basic UNIX

Processes and Shells

Command Line Arguments

Powerful feature — passing values to
your shell script.

e $1..$9 — first nine arguments

e $0 — name of the file/command

e $* - everything on the command
line

e $# returns the number of arguments
on the command line

Basic UNIX

Processes and Shells

Exercise

Run the following script:

./clargs.sh Hello World
./clargs.sh Hello

#!/bin/sh

echo S#

echo SO
echo S1

Basic UNIX

Processes and Shells

The $$ Variable

The $? variable returns the exit
value of the most recently called
command.

This 1s useful to detect successful
completion of a program before
continuing to a program which
relies on the output of that
command.

0 — usually a sign of success

non-zero — error of some sort

Basic UNIX

Processes and Shells

Special Characters

Filename Wildcards (Globbing)

Wildcard characters allow you to
match multiple file names

Two wildcard characters:

? - matches a single character

* - matches one or more characters

Historical note: The jargon usage derives from
glob, the name of a subprogram that expanded

wildcards in archaic pre-Bourne versions of
the Unix shell.

Basic UNIX

Processes and Shells

Special Characters
Filename Wildcards (Globbing)

Example:

Four files named biffo, boffo, baffa
and baffo

b?tfo matches biffo, boffo and baffo
but not baffa

f1 matches all four

Basic UNIX

Processes and Shells

Special Characters

The \ and # Characters
\ performs two roles:

* It “escapes” characters from
substitution

* [t signals the continuation of a shell
script line to the next line

before any characters imply that all
following characters on the line
make up a comment

Basic UNIX

Processes and Shells

I/O Streams and Redirection

Very powerful feature of the shell.
Not found in other operating
systems.

Think of input and output as
streams of data.

Three “standard” streams for a
program:

e Stdin — input stream

* Stdout — output stream

e Stderr — stream for error output (on
a terminal — same as stdout)

Basic UNIX

Processes and Shells

I/O Streams and Redirection

Y ou control the course of the data
streams:

* < file — direct stdin from file
* > file — direct stdout to file
* >> file — append stdout to file

e Commandl | command2 — connects
stdout of commandl to stdin of
command?2 via a pipe

Basic UNIX

Processes and Shells

I/O Streams
File Descriptors

Open files are associated with
numeric file descriptors

e () - stdin
e 1 —stdout
e 2 - stderr

You can direct output to multiple file
descriptors simultaneously.
The most common 1s

1>&2 file — direct stdout AND stderr
to file

Basic UNIX
Processes and Shells

Exercise

Run the following script:

./redir.sh

#!/bin/sh

cd

ls —a > /tmp/ls

echo < /tmp/1ls

cat /tmp/ls | grep csh

Basic UNIX

Processes and Shells

Command Substitution

Any command contained within a
pair of backticks " is executed
immediately. The output of the

command replaces everything in the
backticks.

This can be used to assign the
output of a command to an array to
be used later

#!/bin/sh
files= 1ls
echo Sfiles

3 Basic UNIX

Processes and Shells

Exercise

Run the following script:

./bt.sh

#!/bin/sh
files= 1ls

echo Sfiles

Basic UNIX
Processes and Shells

Expressions

Expressions are used in statements
to control the flow of the shell

Expressions are made up of
constants, variables and operators

Expressions always evaluate to
strings. Numeric calculations can be
performed but are translated back to
strings

Commands can be executed and
variable substitutions can take place
before an expression 1s evaluated.

Basic UNIX
Processes and Shells

Expressions

Most common expressions take on
the form:

token operator roken

where foken 1s usually a variable or
a constant.

Types of operators:

e Numeric

* Logical

Basic UNIX
Processes and Shells

Numeric Expressions

Numeric expressions are evaluated
using the expr command:

Numeric operators include +,-,*,/,%
amongst others

Example:

#!/bin/sh

i=1

echo S$Si

i="expr S$i + 2°
echo S$Si

Si="expr S$i * 3
echo $1

Basic UNIX

Processes and Shells

Exercise

Run this script:

./math.sh

#!/bin/sh

i=1

echo $Si

i="expr $1i + 2°
echo $i

$i=expr S$i * 3°
echo $1

Basic UNIX

Processes and Shells

Logical Expressions

Logical expressions are almost
always used with conditional
statements.

Logical operators include

Basic UNIX

Processes and Shells

Logical Operators

* |- Booean OR

* & - Boolean AND

* = - equivalent

* |=- not equivalent

e <= >= < > -lexical or numeric
comparisons

Examples:

e expr $i <= 10
e expr “$1” = “dostats”

Basic UNIX
Processes and Shells

Logical Expressions
test

Logical expressions are very often
built using the test command.

Test allows the shell to test for
various conditions

* test -d file — true if file 1s a directory

* test -e file — true if file exists

e test $foo -eq $bar — true if the
numbers $foo and $bar are equal

Basic UNIX
Processes and Shells

Logical Expressions
test

In fact, test is so useful, a shortcut has
been created for it

[-e file]
1s the same as

test -e file

Basic UNIX

Processes and Shells

Control Statements

Logical expressions can be used
with four control statements to
direct the flow of execution:

e if..then..elif..then..else..fi
e while..do..done
e for..in..do..done

e case..in..;;..esac

Basic UNIX

Processes and Shells

Control Statements
1f statement

if logical expression
then

elif logical expression
then

else

fi

Basic UNIX

Processes and Shells

Control Statements
statement order

Note that the pieces of the if

statement needed to be on separate
lines. They are each treated as
commands.

You can place them on the same line
by separating them with a semicolon.
This holds for all flow control

if logical expression ; then

elif logical expression ; then

fi

Basic UNIX

Processes and Shells

Exercise

Run the following script:

./if.sh

Enter a CTRL-C and then CTRL-D
Then run it again with just CTRL-D

#!/bin/sh
/bin/sh
St=S57
if [$st —-eg 0]
then
echo "Success!"
elif [$st —-eqg 1]
then
echo "I'm a failure!"
fi

3 Basic UNIX
~ Processes and Shells

Control Statements
case statment

case string in
patternl)

o0
29

pattern2)
55

*)

>
esac

Basic UNIX

Processes and Shells

Exercise

Run this script:

./case.sh -d

#!/bin/sh
case $1 in
v_dv)
echo debugging
set debug

I_Cl)
echo compiling
set compile

r 7
*)
file=S2
echo $2
esac

Basic UNIX

Processes and Shells

Control Statements
foreach statment

for variable in wordlist
do

done

This statement loops over all of the
values 1in wordlist and assigns them
to variable one at a time until all
values have been exhausted.

Basic UNIX

Processes and Shells

Exercise

Run this script:

./for.sh

#!/bin/sh
files="1s -a
for file in $files
do

echo $file
done

Basic UNIX
Processes and Shells

Control Statements
while statment

while logical expression
do

end

This statement loops until the
logical expression 1s false, that 1s, it
continues to loop while the logical
expression 1s true.

Make sure that logical expression
can evaluate to false at some point
or you will have an infinite loop.

Basic UNIX
Processes and Shells

Exercise

Run this script:

./while.sh

#!/bin/sh

n=1

echo 'Look. I can count!'
while [$Sn <= 10]

do
echo —n “ sSn”
sleep 1
n= expr $n + 1
done
echo “ *

exit

Basic UNIX

Processes and Shells

Executing Shell Scripts

There are two ways to execute a
shell script:

* Source the script — as 1f you typed in
the commands yourself into the
current shell

* Make the file executable — a new
shell 1s spawned and the new
processs 1s a child of the current

(parent) shell

Basic UNIX
Processes and Shells

Executing Shell Scripts
Source

. file (Note — that 1s a “dot” and a
space)

Each command 1n the script 1s
interpreted by the current shell.

All variables created are
incorporated into the current shell.

All variables modified affect the
current shell

Very usetul for start-up scripts

Basic UNIX

Processes and Shells

Executing Shell Scripts
Execute

chmod 755 file
Jfile

A new process 1s started with a new
shell.

Variables created by this child will
never be available to the parent.

Variables from the parent, however,
are inherited by the child.

Basic UNIX

Processes and Shells

Processes Encore

Processes can be run in the

background or the foreground of a
shell.

Background processes are batch
processes that must not require
terminal 1nput.

Foreground processes run
interactively and will block any
other input to your current shell
until they finish

Basic UNIX

Processes and Shells

Processes Encore

By default, commands or scripts
started from the terminal start in the
foreground

To background a process, place an

ampersand (&) after the command
when you run it.

Exercise

Start a clock in the background

xclock &

Basic UNIX
Processes and Shells

Processes Encore

In the bash shell, the jobs command
will show you the list of background
processes associated with the current

shell

To bring a background process to
the foreground, use the fg command
with the jobid number given by the
jobs command:

<lister> fg %1

Basic UNIX

Processes and Shells

Exercise

Bring your clock process back to the
foreground and kill it

jobs
fg %1 (or whatever job number it is)

Enter a CTRL-C

Basic UNIX
Processes and Shells

Start-up Scripts

Start-up scripts are useful scripts
you can place 1n all user's home
directories to create a common
environment.

Typically, a start-up script will call
other scripts to create variables:

Excerpt from /etc/profile

for 1 in /etc/profile.d/*.sh; do
if [-r $1]; then
. Si
fi
done
unset 1

Basic UNIX

Processes and Shells

The ps Command

The ps command shows processes
currently running on your computer.
Which processes are shown depends
on the options used with the
command:

* No options — show only processes
associated with the current shell

e -A — show all processes
e -] — long listing

* -aux - the options I use the most

